Sayed A. Ahmed ${ }^{\text {a }}$, Ahmed M. Hussein ${ }^{\text {a }}$, Walaa G. M. Hozayen ${ }^{\text {a }}$,
Ahmed H. H. El-Ghandour ${ }^{\text {a }}$ and Abdou O. Abdelhamid*
${ }^{\text {a }}$ Department of Chemistry, Faculty of Science, Beni-Suef University, Egypt. ${ }^{\mathrm{b}}$ Department of Chemistry, Faculty of Science, Cairo University, Giza 12613, Egypt. Abdou abdelhamid@yahoo.com

Received July 17, 2006

Abstract

Pyrazolo[1,5-a]pyrimidines were synthesized from the appropriate 3 -aminopyrazoles with the appropriate sodium (3-oxocycloalkylidene)methenolate, β-diketone, β-keto esters or 1,2 -disubstituted acrylonitrile. Elemental analyses, spectral data, alternative synthesis route and X-ray elucidated structures of the newly synthesized compounds.

J. Heterocyclic Chem., 44, 803 (2007).

INTRODUCTION

Purine analogues are well known for their importance in biological applications as antimetabolites [1], especially in the treatment of cancer and viral diseases. Also, purines are widely used in the CNS stimulation in vivo [2-10], antagonists, antiviral, antibacterial $[1,11]$ and in the treatment of gout [12]. Also, pyrazolopyrimidine systems are reported as inhibitors for the synthesis of DNA and RNA in the cells of some kinds of cancers [13] and viruses [14,15].

RESULTS AND DISCUSSION

Treatment of 5-amino-3-methylsulfanyl-4-phenylcarba-moyl-1 H -pyrazole (1a) with sodium (2-oxocyclopentylidine)methenolate (2a) in acetic acid containing piperidine acetate afforded a product namely (2-methylthio-(6,7,8,8b-tetrahydrocyclopenta[2,1-e]pyrazolo[1,5-a]pyrim-idin-3-yl))- N-benzamide (5a) or isomeric 6a (Scheme 1). The structure was confirmed by elemental analysis, spectral data and X-ray single crystal. Ir $\left(\mathrm{cm}^{-1}\right)$ spectrum of the product revealed bands at 3299 (NH) and 1645 (CO). Its ${ }^{1} \mathrm{H} \mathrm{nmr}$ spectrum showed signals at $\delta=1.8(\mathrm{t}$, $2 \mathrm{H}, \mathrm{CH}_{2}$), $2.50\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{CH}_{2}\right.$), 2.25 (quintet, $2 \mathrm{H}, \mathrm{CH}_{2}$), 3.32 $\left(\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 7.08-8.73(\mathrm{~m}, 6 \mathrm{H}$, aromatic and pyrimidine $\mathrm{H}-5), 9.43$ ($\mathrm{s}, \mathrm{br}, 1 \mathrm{H}, \mathrm{NH}$). The reaction seemed to be via the initial nucleophilic attack by the exocyclic amino group at the formyl group, which formed in situ from 2a with water, followed by cyclization and elimination of one molecule of water leading to the formation of the
product 5a (Scheme 1). The suggestion of the formation of the alternative isomeric product 6 is based on the initial attack of endocyclic amino group at the formyl group for the formation of $\mathbf{6 a}$.

The latter suggestion is excluded due to the higher nucleophilicity of the exocyclic primary amino group than the endocyclic amino group. Thus, the mechanism proposed in Scheme 1 seems to be acceptable. As the spectroscopic data above, does not allow one to distinguish between possible product 5 or $\mathbf{6}$. Conclusion evidence was obtained by X-ray crystallographic analysis of compound 5i (Figure 1). Similarly, treatment of the appropriate $\mathbf{1 b}-\mathbf{f}, \mathbf{1 s}$ and $\mathbf{1 t}$ were reacted with the appropriate cyclopentylidene- 2a, cyclohexylidene- $\mathbf{2 b}$, and cyclooctylidenemethenolate $2 \mathbf{c}$ to give the tetrahydro-cyclopenta- 5a-f, 5s, 5t, tetrahydrocyclohex- 5g-l, 5u, 5v, and tetrahydrocyclooctapyrazolo[1,5-a]pyrimidine derivatives $\mathbf{5 m - r}, \mathbf{5 w}, 5 x$, respectively.
The reaction of $\mathbf{1 a}$ with 2,4-pentanedione in boiling acetic acid afforded 5,7-dimethyl-2-methylsulfanyl-4-phenylcarba-moylpyrazolo[1,5-a]-pyrimidine (7a) (Scheme 2). Thus, Ir $\left(\mathrm{cm}^{-1}\right)$ spectrum of $7 \mathbf{a}$ revealed bands at $3290(\mathrm{NH}), 1670$ (-CONH), $1620(\mathrm{C}=\mathrm{N})$ and $1596(\mathrm{C}=\mathrm{C}) .{ }^{1} \mathrm{H} \mathrm{nmr}(\delta \mathrm{ppm})$ showed signals at $2.49\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.71\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, $3.56\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SCH}_{3}\right), 7.07-7.70(\mathrm{~m}, 6 \mathrm{H}$, aromatic and pyrimidine H-5) and 10.17 (s, br., 1H, NH). Similarly, 2,4-pentanedione was reacted with the appropriate $\mathbf{1 b} \mathbf{- f}$ in boiling acetic acid to give pyrazolo[1,5-a]pyrimidines 7bf, respectively (Scheme 2).

Figure 1. Diagram of compound $\mathbf{5 i}$ with crystallographic numbering system.

7-phenyl-3-phenylcarbamoylpyrazolo-[1,5-a]pyrimidine (9a). The structure of the product was elucidated by elemental analysis, spectral data and M.O. calculations. Thus, $\operatorname{Ir}\left(\mathrm{cm}^{-1}\right)$ spectrum revealed bands at $3413(\mathrm{NH})$, $1666(\mathrm{CO})$ and $1600(\mathrm{C}=\mathrm{C})$ and its mass spectrum showed peaks at $\mathrm{m} / \mathrm{z}=374\left(\mathrm{M}^{+}, 17.9 \%\right)$ and $282\left(\mathrm{M}^{+}-\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{NH}\right.$, 100%). M.O. calculation using Hyper-Chem and MBI_{3} indicate that structure $\mathbf{8 a}$ is more stable than $\mathbf{9 a}$ (Scheme 2).

Also, treatment of ethyl 3-oxobutanoate with 1a gave one isolable product according to tlc that seemed to be 7-methyl-2-methylsulfanyl-5-oxo-3-phenylcarbamoyl-pyra-zolo[1,5-a]pyrimidine (10a) or isomeric 5-methyl-2-methylsulfanyl-7-oxo-3-phenyl-carbamoylpyrazolo[1,5-a]pyrimidine (11a) (Scheme 3).

Structure of the product was confirmed by elemental analysis, spectral data, alternative synthetic method and M.O. calculation (Scheme 3). Thus, $\operatorname{Ir}\left(\mathrm{cm}^{-1}\right)$ spectrum revealed bands at 3475,3413 (NH's), 1670, 1658 (CO's), $1616(\mathrm{C}=\mathrm{N})$ and $1600(\mathrm{C}=\mathrm{C}) .{ }^{1} \mathrm{H}$ nmr spectrum showed signals at $\delta=2.39\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.83\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SCH}_{3}\right), 5.82$ (s, 1 H , pyrimidine $\mathrm{H}-5$), 7.18-7.60 ($\mathrm{m}, 5 \mathrm{H}$, aromatic), 8.56 (s, br., $1 \mathrm{H}, \mathrm{NH}$) and 10.25 (s, br., $1 \mathrm{H}, \mathrm{NH}$). ${ }^{13} \mathrm{C} \mathrm{nmr}$ showed signals at $\delta=16.01\left(\mathrm{CH}_{3}\right), 19.60\left(\mathrm{SCH}_{3}\right), 99.82$ (pyrimidine C-5), 120.43, 124.84, 129.11, 137.12, 148.53 (Aromatic), 155.05 (CO), 161.39 (CO). The chemical

1,5a, $Y=\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{NO} ; X=\mathrm{SCH}_{3} ; \mathrm{n}=1$
1,5b, $Y=4-\mathrm{CH}_{3} \mathrm{C}_{7} \mathrm{H}_{5} \mathrm{NO} ; X=\mathrm{SCH}_{3} ; n=1$
1,5c, $Y=4-\mathrm{CH}_{3} \mathrm{OC}_{7} \mathrm{H}_{5} \mathrm{NO} ; X=\mathrm{SCH}_{3} ; n=1$
1,5d, $Y=\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{NO} ; X=\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{~N} ; ; n=1$
1,5e, $Y=4-\mathrm{CH}_{3} \mathrm{C}_{7} \mathrm{H}_{5} \mathrm{NO} ; X=\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{~N} ; \mathrm{n}=1$
1,5f, $Y=4-\mathrm{CH}_{3} \mathrm{OC}_{7} \mathrm{H}_{5} \mathrm{NO} ; X=\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{~N} ; n=1$
1,5g, $Y=\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{NO} ; X=\mathrm{SCH}_{3} ; n=2$
1,5h, $\mathrm{Y}=4-\mathrm{CH}_{3} \mathrm{C}_{7} \mathrm{H}_{5} \mathrm{NO} ; \mathrm{X}=\mathrm{SCH}_{3} ; \mathrm{n}=2$
1,5i, $Y=4-\mathrm{CH}_{3} \mathrm{OC}_{7} \mathrm{H}_{5} \mathrm{NO} ; X=\mathrm{SCH}_{3} ; \mathrm{n}=2$
1,5j, $Y=\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{NO} ; X=\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{~N} ; \mathrm{n}=2$
1,5k, Y $=4-\mathrm{CH}_{3} \mathrm{C}_{7} \mathrm{H}_{5} \mathrm{NO} ; X=\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{~N} ; n=2$
1,5I, $Y=4-\mathrm{CH}_{3} \mathrm{OC}_{7} \mathrm{H}_{5} \mathrm{NO} ; X=\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{~N} ; n=2$

1,5m, $\mathrm{Y}=\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{NO} ; \mathrm{X}=\mathrm{SCH}_{3} ; \mathrm{n}=4$
1,5n, $Y=4-\mathrm{CH}_{3} \mathrm{C}_{7} \mathrm{H}_{5} \mathrm{NO} ; \mathrm{X}=\mathrm{SCH}_{3} ; \mathrm{n}=4$
1,5o, $Y=4-\mathrm{CH}_{3} \mathrm{OC}_{7} \mathrm{H}_{5} \mathrm{NO} ; X=\mathrm{SCH}_{3} ; n=4$
1,5p, $Y=\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{NO} ; X=\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{~N} ; n=4$
1,5q, $Y=4-\mathrm{CH}_{3} \mathrm{C}_{7} \mathrm{H}_{5} \mathrm{NO} ; X=\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{~N} \mathrm{n}=4$
1,5r, $Y=4-\mathrm{CH}_{3} \mathrm{OC}_{7} \mathrm{H}_{5} \mathrm{NO} ; X=\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{~N} ; \mathrm{n}=4$
1,5s, $Y=4-\mathrm{ClC}_{7} \mathrm{H}_{5} \mathrm{NO} ; X=\mathrm{SCH}_{3} ; n=1$
1,5t, $Y=4-\mathrm{ClC}_{7} \mathrm{H}_{5} \mathrm{NO} ; X=\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{~N} ; n=1$
$1,5 u, Y=4-\mathrm{ClC}_{7} \mathrm{H}_{5} \mathrm{NO} ; X=\mathrm{SCH}_{3} ; n=2$
1,5v, $Y=4-\mathrm{ClC}_{7} \mathrm{H}_{5} \mathrm{NO} ; X=\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{~N} ; \mathrm{n}=2$
1,5w, Y $=4-\mathrm{ClC}_{7} \mathrm{H}_{5} \mathrm{NO} ; X=\mathrm{SCH}_{3} ; n=4$
$\mathbf{1 , 5 x}, \quad Y=4-\mathrm{ClC}_{7} \mathrm{H}_{5} \mathrm{NO} ; X=\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{~N} ; n=4$

Scheme 1

Analogously, substrate 1a was reacted with benzoylacetone to afford product that seemed to be 7-methyl-2-methylsulfanyl-5-phenyl-3-phenylcarbamoylpyrazolo[1,5a]pyrimidine (8a) or isomeric 5-methyl-3-methylsulfanyl-
shift of carbonyl group was compatible to the pyrazolopyrimidine $\mathbf{1 0}$ and not $\mathbf{1 1}$ [16,17]. On the other hand, 1a was reacted with acetoacetanilide in boiling acetic acid to afford product identical in all respects (mp., mixed mp. and spectra) with 10a. Similar treatment of

1b-f with ethyl 3-oxobutanoate (or acetoacetanilide) in boiling acetic acid gave pyrazolo[1,5-a]pyrimidines 10bf, respectively.

Scheme 2

Ethyl benzoylacetate (or benzoylacetanilide) was reacted with 1a to give 7-methyl-2-methylsulfanyl-5-oxo-3-phenylcarbamoyl-4,5-dihydropyrazolo[1,5- a]pyrimidine (12a) or isomeric 5-methyl-2-methylsulfanyl-7-oxo derivative (13a). Structure of 12a was elucidated by elemental analysis and spectral data (Scheme 3). Thus, Ir $\left(\mathrm{cm}^{-1}\right)$ of 12a revealed bands at $3277(\mathrm{NH}), 1702(\mathrm{CO})$, $1644(\mathrm{C}=\mathrm{N})$ and $1593(\mathrm{C}=\mathrm{C})$. Its mass spectrum showed peaks at $\mathrm{m} / \mathrm{z}=378\left[\mathrm{M}^{+}+2,4.1 \%\right], 377\left[\mathrm{M}^{+}+1,8.4 \%\right], 376$ $\left[\mathrm{M}^{+}, 32.4 \%\right], 284\left[\mathrm{M}-\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}, 83.2 \%\right], 257\left[\mathrm{M}^{+}-\right.$ $\left.\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NHCO}, 0.7 \%\right], 211$ [1.8\%], $129\left[\mathrm{C}_{4} \mathrm{H}_{7} \mathrm{~N}_{3} \mathrm{~S}, 14.8 \%\right]$,
($\delta \mathrm{ppm}$) spectrum showed signals at $2.15\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, $3.43\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SCH}_{3}\right), 7.07-7.64(\mathrm{~m}, 5 \mathrm{H}$, aromatic), $9.30(\mathrm{~s}$, br., $1 \mathrm{H}, \mathrm{NH}$), 10.31 (s, br., 1H, NH), 13.21 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{NH}$). Also, treatment of 1a with acetic anhydride gave product identical in all respects (mp., mixed mp. and spectra) with 14 (Scheme 3)

Also, 1a was reacted with 1-cyano-2-phenylacrylonitrile in boiling ethanol under reflux afforded 7-amino-6-cyano-2-methylsulfanyl-3-phenyl-carbamoyl-5-phenylpyrazolo-[1,5-a]pyrimidine (18a) (Scheme 4). Structure 18a was elucidated by elemental analysis, spectral data and alternative synthetic method. Thus, ir $\left(\mathrm{cm}^{-1}\right)$ of 18a revealed bands at $3471,3413,3367\left(\mathrm{NH}, \mathrm{NH}_{2}\right), 2210(\mathrm{CN})$, $1674(\mathrm{CO}), 1620(\mathrm{C}=\mathrm{N})$ and $1589(\mathrm{C}=\mathrm{C})$. Mass spectrum of 18a showed peaks at $\mathrm{m} / \mathrm{z}=402(\mathrm{M}+2,2.6 \%), 401$ $\left(\mathrm{M}^{+}+1,7.2 \%\right), 400\left(\mathrm{M}^{+}, 23.6 \%\right), 308\left(\mathrm{M}^{+}-\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}, 100 \%\right)$. Also, compound 5-(benzylideneamino)-3-methylsulfanyl-4-phenylcarbamoyl-1 H -pyrazole (19a), which prepared via reaction of 1a with benzaldehyde in sodium ethoxide solution, was reacted with malononitrile in ethanol containing catalytically amount of piperidine gave product identical in all respects (mp., mixed mp. and spectra) with 18a. The reaction seemed to proceed through Michael addition between 1a and benzylidene malononitrile to give intermediate $\mathbf{1 7 a}$, which underwent cyclization via addition of NH hydrogen to the nitrile function followed by autoxidation to give the final product 18a (Scheme 4). Analogously, the appropriate 1b-f reacted with the appropriated 1-cyano-2-arylacrylonitrile derivatives to give

Scheme 3

93 [100\%].
In contrast, 1a reacted with diethyl malonate in boiling acetic acid to give product formulated as 5-acetylamino-3-methylsulfanyl-4-phenylcarbamoyl-1 H -pyrazole (14) which have ir $\left(\mathrm{cm}^{-1}\right)$ spectrum revealed bands at 3319 , 3281 (NH), 1700, 1637 (CO's) and 1589 (C=C). ${ }^{1} \mathrm{H} \mathrm{nmr}$
pyrazolo $[1,5-a]$ pyrimidines $\mathbf{1 8 b}-\mathbf{l}$, respectively.
However, treatment of 1a with the appropriate of ethyl 2-aryl-1-cyanoacrylate (20a) in boiling ethanol containing catalytical amount of piperidine afforded 19a (Scheme 5). Structure of the product was confirmed by elemental analysis, spectral data and alternative synthesis method. Ir

Scheme 4
$\left(\mathrm{cm}^{-1}\right)$ of 19a revealed bands at 3447, 3289 (NH's), 1664 (CO), $1617(\mathrm{C}=\mathrm{N})$ and $1597(\mathrm{C}=\mathrm{C})$. The mass spectrum of $\mathbf{1 9 a}$ showed peaks at $\mathrm{m} / \mathrm{z}=338\left(\mathrm{M}^{+}+2,3.2 \%\right), 337$ $\left(\mathrm{M}^{+}+1,13.5 \%\right), 336\left(\mathrm{M}^{+}, 33.7 \%\right), 244\left(\mathrm{M}^{+}-\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}\right.$, 94.1%).

The reaction seemed to proceed via Michael addition reaction between 1a and 20a to give intermediate 21a, which eliminate ethyl cyanoacetate to give 19a. The other products 22a and 23a were ruled out (Scheme 5).

EXPERIMENTAL

All melting points were determined on an electrothermal apparatus and are uncorrected. IR spectra were recorded (KBr discs) on a Shimadzu FT-IR 8201 PC spectrophotometer. ${ }^{1} \mathrm{H}$ nmr and ${ }^{13} \mathrm{C} \mathrm{nmr}$ spectra were recorded in CDCl_{3} and $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}$ solutions on a Varian Gemini 300 MHz spectrometer and chemical shifts are expressed as δ using TMS as an internal reference. Mass spectra were recorded on a GC-MS QP 1000

$(\mathbf{1 , 1 8 , 1 9}) \mathbf{g}, \mathrm{Y}=\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{NO} ; \mathrm{X}=\mathrm{SCH}_{3} ; \mathrm{Ar}=4-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}$
$(\mathbf{1 , 1 8 , 1 9}) \mathbf{h}, \mathrm{Y}=4-\mathrm{CH}_{3} \mathrm{C}_{7} \mathrm{H}_{5} \mathrm{NO} ; \mathrm{X}=\mathrm{SCH}_{3} ; \mathrm{Ar}=4-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}$ $(\mathbf{1 , 1 8 , 1 9}) \mathbf{i}, \mathrm{Y}=4-\mathrm{OCH}_{3} \mathrm{C}_{7} \mathrm{H}_{5} \mathrm{NO} ; \mathrm{X}=\mathrm{SCH}_{3} ; \mathrm{Ar}=4-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}$ $(\mathbf{1 , 1 8 , 1 9}) \mathbf{j}, Y=\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{NO} ; X=\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{~N} ; \mathrm{Ar}=4-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}$ $(\mathbf{1 , 1 8 , 1 9}) \mathbf{k}, \mathrm{Y}=4-\mathrm{CH}_{3} \mathrm{C}_{7} \mathrm{H}_{5} \mathrm{NO} ; \mathrm{X}=\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{~N} ; \mathrm{Ar}=4-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}$ $(\mathbf{1 , 1 8 , 1 9}) \mathrm{I}, \mathrm{Y}=4-\mathrm{OCH}_{3} \mathrm{C}_{7} \mathrm{H}_{5} \mathrm{NO} ; \mathrm{X}=\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{~N} ; \mathrm{Ar}=4-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}$
$(\mathbf{1 , 1 8 , 1 9}) \mathbf{a}, \mathrm{Y}=\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{NO} ; \mathrm{X}=\mathrm{SCH}_{3} ; \mathrm{Ar}=\mathrm{C}_{6} \mathrm{H}_{5}$
$(\mathbf{1 , 1 8 , 1 9}) \mathbf{b}, \mathrm{Y}=4-\mathrm{CH}_{3} \mathrm{C}_{7} \mathrm{H}_{5} \mathrm{NO} ; \mathrm{X}=\mathrm{SCH}_{3} ; \mathrm{Ar}=\mathrm{C}_{6} \mathrm{H}_{5}$
$(\mathbf{1 , 1 8 , 1 9}) \mathbf{c}, \mathrm{Y}=4-\mathrm{OCH}_{3} \mathrm{C}_{7} \mathrm{H}_{5} \mathrm{NO} ; \mathrm{X}=\mathrm{SCH}_{3} ; \mathrm{Ar}=\mathrm{C}_{6} \mathrm{H}_{5}$
$(\mathbf{1 , 1 8 , 1 9})$ d, $Y=\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{NO} ; X=\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{~N} ; \mathrm{Ar}=\mathrm{C}_{6} \mathrm{H}_{5}$
$(\mathbf{1 , 1 8 , 1 9}) \mathbf{e}, \mathrm{Y}=4-\mathrm{CH}_{3} \mathrm{C}_{7} \mathrm{H}_{5} \mathrm{NO} ; \mathrm{X}=\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{~N} ; \mathrm{Ar}=\mathrm{C}_{6} \mathrm{H}_{5}$
$(\mathbf{1 , 1 8 , 1 9})$ f, $Y=4-\mathrm{OCH}_{3} \mathrm{C}_{7} \mathrm{H}_{5} \mathrm{NO} ; X=\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{~N} ; \mathrm{Ar}=\mathrm{C}_{6} \mathrm{H}_{5}$

Scheme 5

Table 1. Characterization data of the newly synthesized compounds

Comp.	$\mathrm{Mp}{ }^{\circ} \mathrm{C}$ Solvent	Color Yield \%	Mol. Formula Mol. Wt.	Analysis \% Calcd./Found			
5 a	296-98	Yellow	$\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{OS}$	62.94	4.97	17.27	9.88
	Dioxan	89	324.40	63.10	4.82	17.39	10.07
5c	247-49	Yellow	$\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~S}$	61.00	5.12	15.81	9.05
	Dioxan	83	354.42	60.66	5.23	15.74	9.21
5d	220-22	Pale Yellow	$\mathrm{C}_{22} \mathrm{H}_{19} \mathrm{~N}_{5} \mathrm{O}$	71.53	5.18	18.96	-
	DMF	85	369.41	71.67	5.31	18.90	-
5 e	265-66	Pale Yellow	$\mathrm{C}_{23} \mathrm{H}_{21} \mathrm{~N}_{5} \mathrm{O}$	72.04	5.52	18.26	-
	EtOH	73	383.44	72.25	5.27	18.20	-
$5 f$	225-28	Yellow	$\mathrm{C}_{23} \mathrm{H}_{21} \mathrm{~N}_{5} \mathrm{O}_{2}$	69.16	5.30	17.53	-
	EtOH	77	399.44	69.30	5.18	17.40	-
5 g	235-37	White	$\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}$ S	63.88	5.36	16.56	9.47
	Dioxan	86	338.42	64.14	5.16	16.79	9.35
5h	> 300	Buff	$\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{OS}$	64.75	5.72	15.90	9.10
	EtOH	89	352.45	64.50	5.82	15.75	9.01
$5 i$	240-42	Buff	$\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~S}$	61.94	5.47	15.21	8.70
	DMF	65	368.45	62.08	5.60	15.04	9.05
5j	270-73	Yellow	$\mathrm{C}_{23} \mathrm{H}_{21} \mathrm{~N}_{5} \mathrm{O}$	72.04	5.52	18.26	-
	EtOH	80	383.44	72.31	5.77	17.99	-
5k	277-80	Yellow	$\mathrm{C}_{24} \mathrm{H}_{23} \mathrm{~N}_{5} \mathrm{O}$	72.52	5.83	17.62	-
	EtOH	75	397.47	72.27	5.92	17.80	-
51	246-48	Yellow	$\mathrm{C}_{24} \mathrm{H}_{23} \mathrm{~N}_{5} \mathrm{O}_{2}$	69.72	5.61	16.94	-
	Dioxan	85	413.47	70.08	5.76	16.83	-
5m	194-95	Yellow	$\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{OS}$	65.55	6.05	15.29	8.75
	Dioxan	78	366.48	65.66	6.35	15.20	8.95
5n	200-01	White	$\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{~N}_{4} \mathrm{OS}$	66.29	6.36	14.72	8.43
	EtOH	70	380.50	66.36	6.60	14.48	8.55
50	181-83	White	$\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~S}$	63.61	6.10	14.13	8.09
	EtOH	82	396.50	63.70	6.44	14.01	8.30
5p	232-35	Pale Yellow	$\mathrm{C}_{25} \mathrm{H}_{25} \mathrm{~N}_{5} \mathrm{O}$	72.97	6.12	17.02	-
	EtOH	87	411.49	73.11	6.00	17.09	-
$5 \mathbf{q}$	200-02	Buff	$\mathrm{C}_{26} \mathrm{H}_{27} \mathrm{~N}_{5} \mathrm{O}$	73.39	6.40	16.46	-
	Dioxan	65	425.52	73.53	6.26	16.49	-
5 r	207-10	Yellow	$\mathrm{C}_{26} \mathrm{H}_{27} \mathrm{~N}_{5} \mathrm{O}_{2}$	70.73	6.16	15.86	-
	EtOH	80	441.52	70.48	6.25	15.80	-
5 s	263-65	Pale Yellow	$\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{~N}_{4} \mathrm{OSCl}$	56.90	4.21	15.61	8.94
	EtOH	86	358.84	57.15	4.08	15.55	9.09
5 t	240-42	White	$\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{~N}_{5} \mathrm{OCl}$	65.43	4.49	17.34	-
	EtOH	90	403.86	65.19	4.58	17.42	-
5u	260-63	Buff	$\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{~N}_{4} \mathrm{OSCl}$	57.98	4.60	15.03	8.60
	Dioxan	83	372.87	57.66	4.77	15.17	8.42
5v	260-61	Buff	$\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{~N}_{5} \mathrm{OCl}$	66.10	4.82	16.76	-
	Dioxan	70	417.89	66.39	4.77	16.92	-
5w	198-200	Pale Yellow	$\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{~N}_{4} \mathrm{OSCl}$	59.91	5.28	13.97	8.00
	Dioxan	87	400.92	59.73	5.40	13.62	7.91
5x	210-11	Yellow	$\mathrm{C}_{25} \mathrm{H}_{24} \mathrm{~N}_{5} \mathrm{OCl}$	67.33	5.42	15.70	-
	EtOH	81	445.94	67.07	5.75	15.62	-
7 a	225-27	White	$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{OS}$	61.52	5.16	17.93	10.26
	Dioxan	89	312.39	61.60	5.29	17.99	10.43
7b	216-18	Pale Yellow	$\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{OS}$	62.55	5.56	17.16	9.82
	EtOH	85	326.41	62.28	5.62	17.36	9.98
7c	202-05	White	$\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~S}$	59.63	5.30	16.36	9.36
	AcOH	85	342.41	59.89	5.12	16.02	9.62
7d	243-45	White	$\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{~N}_{5} \mathrm{O}$	70.57	5.36	19.59	-
	Dioxan	87	357.40	70.79	5.00	19.25	-
7e	240-42	White	$\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{~N}_{5} \mathrm{O}$	71.41	5.70	18.85	-
	EtOH	75	371.43	71.24	6.00	18.69	-
7f	230-33	Yellow	$\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{~N}_{5} \mathrm{O}_{2}$	68.20	5.46	18.08	-
	Dioxan	92	387.43	68.33	5.22	18.19	-
8a	228-30	Pale Yellow	$\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{OS}$	67.36	4.85	14.96	8.56
	Dioxan	95	374.46	67.12	5.09	15.00	8.37
8b	220-22	Yellow	$\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{OS}$	68.02	5.19	14.42	8.25
	Dioxan	93	388.48	68.97	5.35	14.23	8.32
8 c	180-82	Yellow	$\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~S}$	65.33	4.98	13.85	7.93
	Dil.AcOH	84	404.48	65.57	4.75	13.96	8.17
8d	233-35	Yellow	C26H21N5O	74.44	5.05	16.70	-
	Dioxan	96	419.47	74.61	4.75	16.87	-

Table 1 Continued)

Comp.	$\mathrm{Mp}{ }^{\circ} \mathrm{C}$ Solvent	Color Yield \%	Mol. Formula Mol. Wt.	Analysis \% Calcd./Found			
8e	182-85	White	$\mathrm{C}_{27} \mathrm{H}_{23} \mathrm{~N}_{5} \mathrm{O}$	74.81	5.35	16.16	-
	AcOH	92	433.50	75.00	5.22	16.34	-
$8 f$	252-55	Yellow	$\mathrm{C}_{27} \mathrm{H}_{23} \mathrm{~N}_{5} \mathrm{O}_{2}$	72.14	5.16	15.58	-
	Dioxan	94	449.50	72.37	5.00	15.72	-
10a	210-12	Pale Yellow	$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~S}$	57.31	4.49	17.82	10.20
	Dioxan	88	314.36	57.55	4.20	17.73	10.53
10b	276-78	White	$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~S}$	58.52	4.91	17.06	9.76
	AcOH	82	328.39	58.68	5.17	17.18	9.53
10c	210-12	Yellowish Brown	$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{~S}$	55.80	4.68	16.27	9.31
	EtOH	83	344.38	55.94	4.51	16.45	9.39
10d	295-97	White	$\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{~N}_{5} \mathrm{O}_{2}$	66.84	4.77	19.49	-
	DMF	89	359.38	67.00	4.52	19.74	-
10e	296-98	White	$\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{~N}_{5} \mathrm{O}_{2}$	67.55	5.13	18.75	-
	EtOH	88	373.40	67.33	5.19	19.05	-
10 f	294-95	White	$\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{~N}_{5} \mathrm{O}_{3}$	64.77	4.92	17.98	-
	AcOH	84	389.40	64.90	4.78	18.09	-
12a	175-77	Brown	$\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~S}$	63.81	4.28	14.88	8.52
	EtOH	80	376.43	63.66	4.09	15.15	8.63
12b	160-62	Yellow	$\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~S}$	64.60	4.65	14.35	8.21
	EtOH	80	390.45	63.36	4.99	14.16	8.09
12c	140-43	White	$\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{~S}$	62.06	4.46	13.78	7.89
	EtOH	82	406.45	62.20	4.63	13.55	8.17
12d	243-45	White	$\mathrm{C}_{25} \mathrm{H}_{19} \mathrm{~N}_{5} \mathrm{O}_{2}$	71.25	4.54	16.62	-
	AcOH	80	421.45	71.65	4.30	16.75	-
12e	253-55	Yellow	$\mathrm{C}_{26} \mathrm{H}_{21} \mathrm{~N}_{5} \mathrm{O}_{2}$	71.71	4.86	16.08	-
	EtOH	75	435.47	71.49	5.12	16.21	-
12 f	222-25	Yellow	$\mathrm{C}_{26} \mathrm{H}_{21} \mathrm{~N}_{5} \mathrm{O}_{3}$	69.17	4.69	15.51	-
	AcOH	80	451.47	69.40	4.51	15.77	-
14	175-177	Yellow	$\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~S}$	53.78	4.86	19.30	11.04
	EtOH	75	290.34	53.74	4.91	18.99	11.10
18a	>300	Yellow	$\mathrm{C}_{21} \mathrm{H}_{16} \mathrm{~N}_{6} \mathrm{OS}$	62.98	4.03	20.99	8.01
	DMF	92	400.45	63.20	3.77	20.66	8.33
18b	>300	White	$\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{~N}_{6} \mathrm{OS}$	63.75	4.38	20.28	7.74
	Dioxan	95	414.48	63.93	4.60	19.93	7.83
18c	>300	Yellow	$\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{~N}_{6} \mathrm{O}_{2} \mathrm{~S}$	61.38	4.21	19.52	7.45
	Dioxan	98	430.48	61.55	4.55	19.29	7.66
18d	>300	Yellow	$\mathrm{C}_{26} \mathrm{H}_{19} \mathrm{~N}_{7} \mathrm{O}$	70.10	4.30	22.01	-
	AcOH	87	445.47	70.38	4.00	21.77	-
18e	>300	Yellow	$\mathrm{C}_{27} \mathrm{H}_{21} \mathrm{~N}_{7} \mathrm{O}$	70.57	4.61	21.34	-
	AcOH	97	459.50	70.69	4.37	21.17	-
18 f	>300	Yellow	$\mathrm{C}_{27} \mathrm{H}_{21} \mathrm{~N}_{7} \mathrm{O}_{2}$	68.20	4.45	20.62	-
	AcOH	83	475.50	68.53	4.25	20.83	-
18 g	>300	Yellow	$\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{~N}_{6} \mathrm{OS}$	63.75	4.38	20.28	7.74
	Dioxan	91	414.48	64.02	4.52	20.10	7.95
18h	>300	Pale Yellow	$\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{~N}_{6} \mathrm{OS}$	64.47	4.70	19.61	7.48
	Dioxan	90	428.51	64.81	4.54	19.80	7.39
$18 i$	>300	Pale Yellow	$\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{~N}_{6} \mathrm{O}_{2} \mathrm{~S}$	62.15	4.54	18.91	7.21
	Dioxan	90	444.51	62.33	4.28	19.13	7.05
18j	292-94	Yellow	$\mathrm{C}_{27} \mathrm{H}_{21} \mathrm{~N}_{7} \mathrm{O}$	70.57	4.61	21.34	-
	AcOH	89	459.50	70.85	4.24	21.22	-
18k	298-300	Yellow	$\mathrm{C}_{28} \mathrm{H}_{23} \mathrm{~N}_{7} \mathrm{O}$	71.02	4.90	20.71	-
	AcOH	88	473.52	71.26	5.27	20.97	-
181	294-96	Yellow	$\mathrm{C}_{28} \mathrm{H}_{23} \mathrm{~N}_{7} \mathrm{O}_{2}$	68.70	4.74	20.03	-
	AcOH	80	489.52	68.90	4.45	20.37	-
19a	180-83	Yellow	$\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{OS}$	64.26	4.79	16.65	9.53
	EtOH	90	336.41	64.58	4.40	16.99	9.60
19b	210-12	Brown	$\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{OS}$	65.12	5.18	15.99	9.15
	Dil.AcOH	90	350.43	64.97	5.29	16.22	9.00
19c	206-08	White	$\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~S}$	62.28	4.95	15.29	8.75
	Dil.AcOH	90	366.43	62.10	5.20	15.12	8.84
19d	215-17	Yellow	$\mathrm{C}_{23} \mathrm{H}_{19} \mathrm{~N}_{5} \mathrm{O}$	72.42	5.02	18.36	-
	Dil.AcOH	95	381.43	72.73	4.80	18.30	-
19e	200-02	White	$\mathrm{C}_{24} \mathrm{H}_{21} \mathrm{~N}_{5} \mathrm{O}$	72.89	5.35	17.71	-
	EtOH	97	395.45	73.18	5.12	17.94	-
19 f	210-12	Yellow	C24H21N5O2	70.06	5.14	17.02	-
	EtOH	92	411.45	70.40	4.97	17.11	-

Table 1 (Continued)

Comp.	Mp ${ }^{\circ} \mathrm{C}$	Color	Mol. Formula	Analysis $\%$ Calcd./Found			
	Solvent	Yield $\%$		Mol. Wt.			

Table 2. Spectral data of some synthesized compounds.
$51 \quad{ }^{1} \mathrm{H}$ NMR: 1.87 (quientet, $\left.4 \mathrm{H}, \mathrm{CH}_{2}\right) ; 2.60\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{CH}_{2}\right) ; 2.80\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{CH}_{2}\right) ; 3.75\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ; 6.92-7.73(\mathrm{~m}$,

5n ${ }^{1} \mathrm{H}$ NMR: 1.57 (quientet, $\left.4 \mathrm{H}, \mathrm{CH}_{2}\right) ; 2.23\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ; 2.51\left(\mathrm{t}, 4 \mathrm{H}, \mathrm{CH}_{2}\right) ; 2.52$ (quientet, $4 \mathrm{H}, \mathrm{CH}_{2}$); 3.3 (s,

Comp. No

5a

5c

5d
$5 f$
$5 g$

5h
$5 i$

5j

5k

5r

Spectra

${ }^{1} \mathrm{H}$ NMR: $1.8\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{CH}_{2}\right) ; 2.50\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{CH}_{2}\right) ; 2.25\left(q u i e n t e t, 2 \mathrm{H}, \mathrm{CH}_{2}\right) 3.32\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ; 7.08-7.73(\mathrm{~m}$, $5 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}$) ; 8.73 (s, 1H, pyrimidine H-5) and 9.43 (s, br, $1 \mathrm{H}, \mathrm{NH}$). IR: $3299(\mathrm{NH})$ and $1645(\mathrm{CO})$. Ms: $326\left[\mathrm{M}^{+}+2,2 \%\right] ; 325\left[\mathrm{M}^{+}+1,5 \%\right] ; 324\left[\mathrm{M}^{+}, 2 \%\right] ; 232\left[\mathrm{M}^{+}-\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}, 100 \%\right]$ and $65\left[\mathrm{C}_{5} \mathrm{H}_{5}, 12 \%\right]$. IR: 3285 (NH) and 1662 (CO).
MS: $356\left[\mathrm{M}^{+}+2,2 \%\right] ; 355\left[\mathrm{M}^{+}+1,5 \%\right] ; 354\left[\mathrm{M}^{+}, 2 \%\right] ; 232\left[\mathrm{M}^{+}-\mathrm{OCH}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NH}, 100 \%\right]$ and $65\left[\mathrm{C}_{5} \mathrm{H}_{5}\right.$, 12%].
${ }^{1} \mathrm{H}$ NMR: 2.17-2.4 (quientet, $2 \mathrm{H}, \mathrm{CH}_{2}$); 2.8-3.18 (t, $2 \mathrm{H}, \mathrm{CH}_{2}$); 3.28-3.4 (t, $2 \mathrm{H}, \mathrm{CH}_{2}$); 6.95-7.78 (m, 10H, $\left.\mathrm{C}_{6} \mathrm{H}_{5}\right) ; 8.2(\mathrm{~s}, 1 \mathrm{H}$, pyrimidine $\mathrm{H}-5) ; 9.41(\mathrm{~s}, \mathrm{br}, 1 \mathrm{H}, \mathrm{NH})$ and $9.85(\mathrm{~s}, \mathrm{br}, 1 \mathrm{H}, \mathrm{NH})$.
IR: 3054, 3299 (NH's) and 1654 (CO).
Ms: $369\left[\mathrm{M}^{+}, 49 \%\right] ; 277\left[\mathrm{M}^{+}-\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}, 100 \%\right]$ and $65\left[\mathrm{C}_{5} \mathrm{H}_{5}, 16 \%\right]$.
IR: $3211,3298(\mathrm{NH}$'s) and $1652(\mathrm{CO})$.
Ms: $399\left[\mathrm{M}^{+}, 42 \%\right]$ and 277 [$\left.\mathrm{M}^{+}-\mathrm{OCH}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NH}, 100 \%\right]$.
${ }^{1} \mathrm{H}$ NMR: $1.89\left(\mathrm{t}, 4 \mathrm{H}, \mathrm{CH}_{2}\right) ; 2.51$ (quientet, $2 \mathrm{H}, \mathrm{CH}_{2}$); $2.79\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ; 3.01$ (quientet, $2 \mathrm{H}, \mathrm{CH}_{2}$); 7.04$7.67\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}\right) ; 8.95(\mathrm{~s}, 1 \mathrm{H}$, pyrimidine $\mathrm{H}-5)$ and $9.93(\mathrm{~s}, \mathrm{br}, 1 \mathrm{H}, \mathrm{NH})$.
IR: $3292(\mathrm{NH})$ and $1669(\mathrm{CO})$.
MS: $339\left[\mathrm{M}^{+}+1,4 \%\right] ; 338\left[\mathrm{M}^{+}, 16 \%\right]$ and $246\left[\mathrm{M}^{+}-\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}, 100 \%\right]$.
IR: $3425(\mathrm{NH})$ and $1674(\mathrm{CO})$.
MS: $353\left[\mathrm{M}^{+}+1,0.2 \%\right] ; 352\left[\mathrm{M}^{+}, 1 \%\right] ; 282$ [29\%]; $246\left[\mathrm{M}^{+}-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NH}, 6 \%\right] ; 176$ [100\%]; 107 $\left[\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NH}, 95 \%\right] ; 77\left[\mathrm{C}_{6} \mathrm{H}_{5}, 24 \%\right]$ and $65\left[\mathrm{C}_{5} \mathrm{H}_{5}, 15 \%\right]$.
${ }^{1} \mathrm{H}$ NMR: $1.80\left(\mathrm{t}, 4 \mathrm{H}, \mathrm{CH}_{2}\right) ; 2.51\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$; 2.54 (quientet, $4 \mathrm{H}, \mathrm{CH}_{2}$); $3.58\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ; 6.90-7.59(\mathrm{q}$, $4 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}$) ; 8.91 ($\mathrm{s}, 1 \mathrm{H}$, pyrimidine $\mathrm{H}-5$) and 9.77 (s, br, 1H, NH). IR: 3286 (NH) and 1658 (CO).
Ms: $370\left[\mathrm{M}^{+}+2,1 \%\right] ; 369\left[\mathrm{M}^{+}+1,3 \%\right] ; 368\left[\mathrm{M}^{+}, 13 \%\right]$ and $246\left[\mathrm{M}^{+}-\mathrm{OCH}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NH}, 6 \%\right]$.
${ }^{1} \mathrm{H}$ NMR: 1.82 (quientet, $\left.4 \mathrm{H}, \mathrm{CH}_{2}\right) ; 2.82\left(\mathrm{t}, 4 \mathrm{H}, \mathrm{CH}_{2}\right) ; 7.32-7.76\left(\mathrm{~m}, 10 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}\right) ; 8.46(\mathrm{~s}, 1 \mathrm{H}$, pyrimidine H-5); 9.41 (s, br, 1H, NH) and 9.82 (s, br, 1H, NH).
IR: 3301, 3440 (NH's) and 1596 (CO).
Ms: 383 [$\left.\mathrm{M}^{+}, 43 \%\right] ; 291\left[\mathrm{M}^{+}-\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}, 100 \%\right] ; 77\left[\mathrm{C}_{6} \mathrm{H}_{5}, 29 \%\right]$ and $65\left[\mathrm{C}_{5} \mathrm{H}_{5}, 45 \%\right]$.
5k ${ }^{1} \mathrm{H}$ NMR: $1.86(\mathrm{t}, 2 \mathrm{H}, \mathrm{CH} 2) ; 2.31(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH} 3) ; 2.52(\mathrm{t}, 2 \mathrm{H}, \mathrm{CH} 2) ; 2.79$ (quientet, $4 \mathrm{H}, \mathrm{CH} 2$); 6.95-7.77 (m, 9H, C6H5, C6H4); 8.38 (s, 1H, pyrimidine H-5); 9.38 (s, br, 1H, NH) and 9.96 (s, br, 1H, NH). IR: 3383, 3507 (NH's) and 1658 (CO).
Ms: 397 [M+, 27\%]; 291 [M+- CH3C6H4NH, 100\%] and 198 [C6H5 + CH3C6H4NH, 10\%]. 9 H , aromatic); $8.83(\mathrm{~s}, 1 \mathrm{H}$, pyrimidine $\mathrm{H}-5) ; 9.36(\mathrm{~s}, \mathrm{br}, 1 \mathrm{H}, \mathrm{NH})$ and $9.63(\mathrm{~s}, \mathrm{br}, 1 \mathrm{H}, \mathrm{NH})$.
IR: $3301,3445(2 \mathrm{NH})$ and $1653(\mathrm{CO})$.
Ms: 413 [M+, 42\%] and 291 [M+- OCH3C $\left.{ }_{6} \mathrm{H}_{4} \mathrm{NH}, 100 \%\right]$. $\left.3 \mathrm{H}, \mathrm{CH}_{3}\right) ; 7.13-7.59\left(\mathrm{q}, 4 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right) ; 8.67(\mathrm{~s}, 1 \mathrm{H}$, pyrimidine $\mathrm{H}-5)$ and $10.08(\mathrm{~s}, \mathrm{br}, 1 \mathrm{H}, \mathrm{NH})$.
IR: 3323 (NH) and 1668 (CO).
5p IR: 3432, $3316(\mathrm{NH}$'s) and $1655(\mathrm{CO})$.
Ms: 411 [M+, 13\%]; 319 [M+- $\left.\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}, 34 \%\right] ; 293$ [74\%]; 200 [100\%]; 143 [12\%]; 77 [$\left.\mathrm{C}_{6} \mathrm{H}_{5}, 30 \%\right]$ and $65\left[\mathrm{C}_{5} \mathrm{H}_{5}, 14 \%\right]$.
${ }^{1} \mathrm{H}$ NMR: 1.35 (quientet, $4 \mathrm{H}, \mathrm{CH}_{2}$); 1.40 (quientet, $2 \mathrm{H}, \mathrm{CH}_{2}$); $2.51\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{CH}_{2}\right) ; 2.81\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{CH}_{2}\right) ; 2.83$ $3.07\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right) ; 3.77\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ; 6.94-7.75(\mathrm{~m}, 9 \mathrm{H}$, aromatic); $8.53(\mathrm{~s}, 1 \mathrm{H}$, pyrimidine $\mathrm{H}-5) ; 9.43(\mathrm{~s}$, $\mathrm{br}, 1 \mathrm{H}, \mathrm{NH}$) and 9.75 (s, br, 1H, NH) .
IR: 3311, 3446 (NH's) and 1653 (CO).
Ms: $441\left[\mathrm{M}^{+}, 28 \%\right]$ and $319\left[\mathrm{M}^{+}-\mathrm{OCH}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NH}, 100 \%\right]$.

EX Shimadzu. Elemental analyses were carried out at the Microanalytical Canter of the Cairo University. X-ray single crystals analysis was obtained from the National Research Centre, Dokki, Cairo, Egypt. Aminopyrazoles 1a-f were prepared as previously reported [18].

Synthesis of pyrazolo[1,5-a]pyrimidine derivatives 5a-y, General method. A mixture of the appropriate sodium salt 2 (10 mmoles) and the appropriate aminopyrazol 1a-f (10 mmoles) in a solution of piperidine acetate (piperidine $(2.5 \mathrm{~mL})$, water (5 $\mathrm{mL})$ and acetic acid (2 mL)) was heated under reflux for about 10 minutes, acetic acid (1.5 mL) was added to the reaction mixture while boiling, then the mixture was cooled and the resulting solid was collected and recrystallized from appropriate solvent to give 5a-y (Tables 1 and 2).
Synthesis of pyrazolo[1,5-a]pyrimidines (7,8,10,12)a-f, General procedure. A mixture of the appropriate aminopyrazoles 1a-f (5 mmoles) and the appropriate 2,4-pentanedione, benzoylacetone, ethyl 3-oxobutanoate (or acetoacetanilide) and ethyl benzoylacetate (or benzoylacetanilide) in acetic acid (15 mL) were boiled under reflux for 3 hrs . The resulting solid was collected and recrystallized from an appropriate solvent to afford pyrazolo[1,5-a]pyrimidines (7, 8, 10, 12)a-f (Tables 1 and 2).
Synthesis of 5-acetylamino-3-methylsulfanyl-4-phenyl-carbamoyl-1H-pyrazole (14). Method A. A mixture of aminopyrazole 1a (5 mmoles) and diethyl malonate (0.08 g) in acetic acid (15 mL) were boiled under reflux for 2 hrs . The resulting solid was collected and recrystallized from ethanol to afford $\mathbf{1 4}$ (Tables 1 and 2).
Method B. Acylation of aminopyrazoles 1a with acetyl chloride (or acetic anhydride) (5 mmoles) in boiling acetic acid (10 ML) for 2 hrs gave a solid product which collected and recrystallized from ethanol to afford 14.
Synthesis of pyrazolo[1,5-a]pyrimidines 18a-I. Method A. Equimolar amounts of aminopyrazoles 1a-f and 1-cyano-2arylacrylonitriles (0.005 mole for each) in ethanol (20 mL) containing a catalytically amount of piperidine were heated under reflux for 2 hrs. The resulting solids were collected and recrystallized from a suitable solvent to give 18a-l (Tables 2 and 3).

Method B. A mixture of 1a, malonitrile and the appropriate of aromatic aldehydes (0.005 mole) were stirred for 3 hrs in the presence of ethanol (15 mL) containing catalytical amount of piperidine at room temperature to afford the solid product, which collected and recrystallized from a appropriate solvent to afford 18a-1.
Method C. A mixture of the appropriate of 19a-l and malononitrile (0.005 mole) in ethanol (15 ml) containing catalytically amount of piperidine was heated under reflux for 4
hrs. The resulting solid was collected and recrystallized from proper solvent to afford 18a-l.
Synthesis of 5-(arylidene-amino)-3-methylsulfanyl-4-phenylcarbamoyl-1H-pyrazole derivatives 19a-I. A mixture of the appropriate aminopyrazoles 1a-f with the appropriate of aromatic aldehydes (5 mmoles) in ethanol $(20 \mathrm{~mL})$ was stirred and sodium ethoxide solution was added. The resulting solid was collected and recrystallized from the proper solvent to give 19a-l (Tables 2 and 3).
X-Ray structural analysis of compound 5 i. Crystal data $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O} 2 \mathrm{~S}, \mathrm{M}=368.459$, monoclinic. $\mathrm{P} 2_{1} / \mathrm{c}, \mathrm{a}=9.1050(6) \AA$, $\mathrm{b}=19.8174 \AA, \mathrm{c}=10.1400(8) \AA, \alpha=90.00^{\circ}, \beta=100.986(3)^{\circ}, \gamma$ $=90.00^{\circ}, \mathrm{V}=1796.1(2) \mathrm{A}^{03}, \mathrm{Z}=4$.

REFERENCES

[1] Quintela, J.M.; Peinador, C.; Moreira, M.J.; Alfonso, A.; Botana, L.M.; Riguera, R. Eur. J. Med. Chem. 2001, 36, 321
[2] Kim, D.-K.; Ryu, D.H.; Lee, N.; Lee, J. Y.; Kim, J.-S.; Lee S.; Choi, J.-Y.; Ryu, J.-H.; Kim, N.-H., Im., G.-J.; Choi, W.-S.; Kim, T.-K. Bioorg. \& Med. Chem., 2001, 9, 1895
[3] Moore, E. C. J. Pharm. Soc. Wisconsin, 2000, Sep/Oct, 33.
[4] Sanna, E.; Busonero, F.; Talani, G.; Carta, M.; Massa, F.; Peis, M., Maciocco, E.; Biggio, G. Eur. J. Pharmacol., 2002, 451, 103.
[5] Lader, M. H. Primary Care Companion J. Clin. Psychiatry, 2002, 4, 33.
[6] Scharf, M. Eur Neuropsychopharmacol., 1999, 9, 5360.
[7] Hedner, J.; Mangano, R. Eur Neuropsychopharmacol., 1999, 9, 5362.
[8] Levine, B.; Moore, K. A.; Tittus, J. K.; Fowler, D. J. Forsenic Sci. 2002, 47, 1338.
[9] George, C.F.P. THE Lancet. 2001, 358, 1632.
[10] Dumaitre, B.; Dodic, N. J. Med. Chem., 1996, 39, 1635.
[11] Foreman, J.; Garland, I. Br. Med. J., 1, 1976, 820.
[12] Elgemeie, G.H.; Elezaby,S. E.; Ali, H. A.; Mansour, A. Bull. Chem. Soc. Jpn., 1994, 67, 738.
[13] Seela, F.; Wei,C.; Becher, G.; Zulauf , M.; Leonard, P. Bioorg.\& Med. Chem. Lett., 2000, 10, 289.
[14] Tominaga, Y.; Honkawa, Y.; Hara, M.; Hosomi, A. J. Heterocycl. Chem.1990, 27, 775.
[15] Moukha-chafiq,O.; Taha, M.L.; Lazrek, H.B.; Vasseur, J.-.J.; Pannecouque, C.; Witvrouw, M.; De Clercq, E. IL Farmaco, 2002, 57, 27.
[16] Bedford, G.R.; Taylor, P.J.; Webb, G.A. Mag. Res. Chem., 1995, 33, 386.
[17] Abdel-Rahman, A. A-H.; Zahran, M.A.; Abdel-Magied, A.E.-S.; Pederson, E.B. ; Nielsen. Synthesis.1996, 237.
[18] Elgemeie, G..H.; Elghandour, A.H.; Elzanate, A.M.; Ahmed, S.A. J. Chem. Soc. Perkin Trans 1, 1997, 3285.

